An effective Hamiltonian analysis of a Franck-Condon-like pattern in the IR spectra of phenol-alkylsilane dihydrogen-bonded clusters in the S1 state

J Chem Phys. 2020 May 21;152(19):194306. doi: 10.1063/5.0005259.

Abstract

Infrared (IR) spectra in a region of the OH stretch band of phenol (PhOH)-ethyldimethylsilane (EDMS), phenol (PhOH)-triethylsilane (TES), and phenol (PhOH)-t-butyldimethylsilane (BDMS) dihydrogen-bonded clusters in the S1 state were observed. All of the species exhibited unconventional band patterns in which many combination bands appeared with comparable intensities to those of allowed bands. Such a behavior is sometimes called a Franck-Condon-like pattern. In the case of the PhOH-BDMS, one intermolecular vibrational mode is involved in this behavior. The observed IR spectra were well reproduced based on the concept of the Franck-Condon-like behavior. As an alternative treatment, we analyzed the band patterns on the concept of intensity borrowing due to the vibrational anharmonic interaction. The analysis was based on an effective Hamiltonian involving an anharmonic interaction between the OH stretch and intermolecular vibrational modes. Two treatments provided the same results. Thus, it was confirmed that the Franck-Condon-like behavior originates from vibrational anharmonic interactions. In the cases of the PhOH-EDMS and PhOH-TES, we carried out a two-dimensional Franck-Condon and an effective Hamiltonian analysis to interpret the Franck-Condon-like patterns. We examined vibrational wave functions obtained by the latter analysis. Shapes of the wave functions suggest that a recombination of the intermolecular vibrational modes occurs during the excitation of OH stretch mode in these clusters, which is a similar behavior to the Duschinsky effect in the electronic transition.