Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zerovalent iron: Compound effects and removal mechanism

J Hazard Mater. 2021 Jul 15:414:125555. doi: 10.1016/j.jhazmat.2021.125555. Epub 2021 Mar 2.

Abstract

Sulfurized nanoscale zerovalent iron (S-nZVI) has been widely reported to be able to quickly remove heavy metals/persistent organic pollutants, but the limited understanding of the complicated removal process of heavy metals-organic combined pollutants restricts the application of S-nZVI. Here, we demonstrate that there is significant difference in the effectiveness of S-nZVI for removing single pollutant and complex pollutants. The removal kinetic constant (kobs) of heavy metals by S-nZVI followed a sequence of Cr(VI)>Pb(II)>Ni(II)>Cd(II) with or without polybrominated diphenyl ethers (PBDEs). While the capacity of co-existing cations increasing the kobs of PBDEs followed the order: Ni(II)>Pb(II)>Cd(II), and the co-existence of Cr(VI) anion inhibited the reduction of PBDE by S-nZVI because the generated Cr-Fe precipitate hindered the electron transfer. The de-passivation process on S-nZVI surface by Cd(II) ions slightly accelerated the transformation rate of electron. Nevertheless, the co-existing Pb(II) significantly accelerated the transformation of BDE-209 via the galvanic effect from the generated Pb0/Fe0 bimetal. Interestingly, the kobs of BDE-47 in Ni(II)/S-nZVI system was 5.51 times higher than that of Pb(II)/S-nZVI system, implying that an atomic hydrogen mechanism dominated the reduction of BDE-47 by Ni(II)/S-nZVI. In conclusion, the results provided a deep comprehending of removal mechanism of heavy metal-organic complex pollutants by S-nZVI.

Keywords: Heavy metal ions; Polybrominated diphenyl ethers; Reductive reaction; S-nZVI.

Publication types

  • Research Support, Non-U.S. Gov't