Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton

IEEE Trans Neural Syst Rehabil Eng. 2021:29:629-640. doi: 10.1109/TNSRE.2021.3064463. Epub 2021 Mar 15.

Abstract

Misalignments between powered exoskeleton joints and the user's anatomical joints are inevitable due to difficulty locating the anatomical joint axis, non-constant location of the anatomical joint axis, and soft-tissue deformations. Self-aligning mechanisms have been proposed to prevent spurious forces and torques on the user's limb due to misalignments. Several exoskeletons have been developed with self-aligning mechanisms based on theoretical models. However, there is no experimental evidence demonstrating the efficacy of self-aligning mechanisms in lower-limb exoskeletons. Here we show that a lightweight and compact self-aligning mechanism improves the user's comfort and performance while using a powered knee exoskeleton. Experiments were conducted with 14 able-bodied subjects with the self-aligning mechanism locked and unlocked. Our results demonstrate up to 15.3% increased comfort and 38% improved performance when the self-aligning mechanism was unlocked. Not surprisingly, the spurious forces and torques were reduced by up to 97% when the self-aligning mechanism was unlocked. This study demonstrates the efficacy of self-aligning mechanisms in improving comfort and performance for sit-to-stand and position tracking tasks with a powered knee exoskeleton.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biomechanical Phenomena
  • Exoskeleton Device*
  • Humans
  • Knee Joint
  • Lower Extremity
  • Models, Theoretical
  • Torque
  • Walking