Tetraphenylethylene-Arylamine Derivatives as Hole Transporting Materials for Perovskite Solar Cells

ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12322-12330. doi: 10.1021/acsami.1c01606. Epub 2021 Mar 8.

Abstract

A series of hole transporting materials (HTMs) with fused tetraphenylethylene cores (9,9'-bifluorenylidene and dibenzo[g,p]chrysene) as well as different substitution positions of arylamine side arms has been designed and synthesized. A reference HTM with a non-fused tetraphenylethylene core is also prepared for a comparative study. It is noted that fused tetraphenylethylene molecules show a bathochromic spectral shift, electronegative character, and lower reorganization energies than the non-fused ones. Furthermore, the molecules with side arms located on the meta-position on the tetraphenylethylene core in terms of a double bond exhibit a deeper highest occupied molecular orbital level than those of the para-position-based ones whether tetraphenylethylene is fused or not. Moreover, the reorganization energies of fused meta-position-based HTMs are lower than those of para-position-based HTMs. Fused tetraphenylethylene HTMs own a better hole-extraction capability than the non-fused ones. When used in perovskite solar cells, all devices with fused tetraphenylethylene HTMs display better performance than those of the non-fused ones. The HTMs based on dibenzo[g,p]chrysene exhibit better performance than those of bifluorenylidene. Moreover, the devices with HTMs with side arms located on the meta-position on the tetraphenylethylene core display higher power conversion efficiency than those of the para-position-based ones. The results give some new insight and reference to develop ideal HTMs for perovskite solar cells.

Keywords: 9,9′-bifluorenylidene; dibenzo[g,p]chrysene; fused tetraphenylethylene; hole transporting materials; perovskite solar cells; substitution position.