Right lateralized alpha desynchronization increases with the proportion of symmetry in the stimulus

Eur J Neurosci. 2021 May;53(9):3175-3184. doi: 10.1111/ejn.15176. Epub 2021 Mar 17.

Abstract

Research into the neural basis of symmetry perception has intensified in the last two decades; however, the functional role of neural oscillations remains unclear. In previous work Makin et al. (2014, Journal of Vision, 14, 1-12) and Wright et al. (2015, Psychophysiology, 52, 638-647) examined occipital alpha event-related desynchronization (alpha ERD). It was concluded that alpha ERD is right lateralized during active regularity discrimination but not during a secondary task. Furthermore, alpha ERD was unaffected by stimulus properties, such as the type of regularity. These conclusions are refuted by new time-frequency analysis on an electroencephalography (EEG) data set first introduced by Makin et al. (2020, Journal of Cognitive Neuroscience, 32, 353-366). We compared alpha ERD across five tasks. First, we found that right lateralization of alpha ERD was evident in all tasks, not just active regularity discrimination. This was caused by hemispheric differences in alpha power during prestimulus baseline (left < right), which equalized after stimulus onset (left = right). Second, we found that Alpha ERD increased with the proportion of symmetric elements in the image (PSYMM). Sensitivity to PSYMM was stronger on the right. These findings suggest that known extrastriate symmetry activations are accompanied by reduced alpha power.

Keywords: EEG; LOC; neural oscillations; regularity; time-frequency analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electroencephalography*