Diverse Adiposity and Atrio-Ventricular Dysfunction across Obesity Phenotypes: Implication of Epicardial Fat Analysis

Diagnostics (Basel). 2021 Feb 27;11(3):408. doi: 10.3390/diagnostics11030408.

Abstract

Obesity has been conceptualized as a highly heterogeneous condition. We aim to investigate chamber-specific effects of obesity on the heart and relevant outcomes. A total of 2944 symptom-free individuals (age: 47.5 ± 10.0 years), free of known cardiovascular diseases were classified into four categories based on body mass index (BMI) (as normal-weight (NW) vs. overweight/obese (O)) and metabolic status (metabolically-healthy (MH) vs. unhealthy (MU)). Epicardial adipose thickness (EAT) using echocardiography method. Speckle-tracking based atrio-ventricular (LA/LV) deformations including global longitudinal strain (GLS) and peak atrial longitudinal strain (PALS) were also analyzed. MUNW had higher cardiometabolic risks and more impaired diastolic and GLS/PALS than MHNW phenotype. Both MHO and MUO phenotypes exhibited worst atrial functions. Greater EAT was independently associated with worse GLS and PALS after correcting for various anthropometrics, LV mass and LA volume, respectively, with unfavorable LA effects from EAT being more pronounced in the NW phenotypes (both p interactions < 0.05). During a median follow-up period of 5.3 years, BMI/EAT improved the reclassification for atrial fibrillation (AF) incidence (p for net reclassification improvement < 0.05) mainly in the NW phenotypes (p interaction < 0.001). Categorization of clinical obesity phenotypes based on excessive visceral adiposity likely provides increment prognostic impacts on atrial dysfunction, particularly in non-obese phenotypes.

Keywords: atrial fibrillation; atrio-ventricular deformations; epicardial adiposity thickness; metabolically unhealthy normal-weight; obesity.