Basalt Fiber-Based Flame Retardant Epoxy Composites: Preparation, Thermal Properties, and Flame Retardancy

Materials (Basel). 2021 Feb 14;14(4):902. doi: 10.3390/ma14040902.

Abstract

We aimed to study the impact of surface modification of basalt fiber (BF) on the mechanical properties of basalt fiber-based epoxy composites. Four different types of pretreatment approaches to BF were used; then a silane coupling agent (KH550) was applied to further modify the pretreated BF, prior to the preparation of epoxy resin (EP)/BF composites. The combination of acetone (pre-treatment) and KH550 (formal surface treatment) for basalt fiber (BT-AT) imparted the EP/BF composite with the best performance in both tensile and impact strengths. Subsequently, such modified BF was introduced into the flame-retardant epoxy composites (EP/AP750) to prepare basalt fiber reinforced flame-retardant epoxy composite (EP/AP750/BF-AT). The fire behaviors of the composites were evaluated by vertical burning test (UL-94), limiting oxygen index (LOI) test and cone calorimetry. In comparison to the flame-retardant properties of EP/AP750, the incorporation of BF-AT slightly reduced LOI value from 26.3% to 25.1%, maintained the good performance in vertical burning test, but increased the peak of the heat release rate. Besides, the thermal properties and mechanical properties of the composites were investigated by thermogravimetric analysis (TGA), universal tensile test, impact test and dynamic mechanical analysis (DMA).

Keywords: basalt fiber (BF); composites; epoxy resin (EP); flammability.