A Multipath Fusion Strategy Based Single Shot Detector

Sensors (Basel). 2021 Feb 15;21(4):1360. doi: 10.3390/s21041360.

Abstract

Object detection has wide applications in intelligent systems and sensor applications. Compared with two stage detectors, recent one stage counterparts are capable of running more efficiently with comparable accuracy, which satisfy the requirement of real-time processing. To further improve the accuracy of one stage single shot detector (SSD), we propose a novel Multi-Path fusion Single Shot Detector (MPSSD). Different from other feature fusion methods, we exploit the connection among different scale representations in a pyramid manner. We propose feature fusion module to generate new feature pyramids based on multiscale features in SSD, and these pyramids are sent to our pyramid aggregation module for generating final features. These enhanced features have both localization and semantics information, thus improving the detection performance with little computation cost. A series of experiments on three benchmark datasets PASCAL VOC2007, VOC2012, and MS COCO demonstrate that our approach outperforms many state-of-the-art detectors both qualitatively and quantitatively. In particular, for input images with size 512 × 512, our method attains mean Average Precision (mAP) of 81.8% on VOC2007 test, 80.3% on VOC2012 test, and 33.1% mAP on COCO test-dev 2015.

Keywords: feature fusion; object detection; single shot detector.