Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate

Polymers (Basel). 2021 Feb 21;13(4):639. doi: 10.3390/polym13040639.

Abstract

The potential of using residual softwood fibers from the pulp and paper industry for producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate (CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels were manufactured in the laboratory by applying CLS addition content ranging from 8% to 14% (on the dry fibers). The physical and mechanical properties of the developed composites, i.e., water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), as well as the free formaldehyde emission, were evaluated according to the European norms. In general, only the composites, developed with 14% CLS content, exhibited MOE and MOR values, comparable with the standard requirements for medium-density fiberboards (MDF) for use in dry conditions. All laboratory-produced composites demonstrated significantly deteriorated moisture-related properties, i.e., WA (24 h) and TS (24 h), which is a major drawback. Noticeably, the fiberboards produced had a close-to-zero formaldehyde content, reaching the super E0 class (≤1.5 mg/100 g), with values, ranging from 0.8 mg/100 g to 1.1 mg/100 g, i.e., equivalent to formaldehyde emission of natural wood. The amount of CLS adhesive had no significant effect on formaldehyde content.

Keywords: bioadhesives; calcium lignosulfonate; fiberboards; recycled fibers; wood-based panels; zero-formaldehyde emission.