Effect of Kelulut Honey Nanoparticles Coating on the Changes of Respiration Rate, Ascorbic Acid, and Total Phenolic Content of Papaya (Carica papaya L.) during Cold Storage

Foods. 2021 Feb 16;10(2):432. doi: 10.3390/foods10020432.

Abstract

This study evaluated the respiration rate of coated and uncoated (control) papayas (Carica papaya L.) with 15% of Kelulut honey (KH) nanoparticles (Nps) coating solution during cold storage at 12 ± 1 °C for 21 days. The respiration rate of the papayas significantly changed during storage, with an increase in CO2 and a decrease in O2 and C2H4, while the ascorbic acid and total phenolic content was maintained. The changes in respiration rate were rather slower for coated papayas when compared to control ones. A kinetic model was established from the experimental data to describe the changes of O2, CO2, and C2H4 production in papayas throughout the storage period. All O2, CO2, and C2H4 were experimentally retrieved from a closed system method and then represented by the Peleg model. The outcomes indicated the Peleg constant K1 and K2, which were gained from linear regression analysis and coefficients of determination (R2), seemed to fit well with the experimental data, whereby the R2 values exceeded 0.85 for both coated and control papayas. The model confirmed both the capability and predictability aspects of the respiration rate displayed by papayas coated with KH Nps throughout the cold storage period. This is supported by the differences in the stomatal aperture of coated and control papaya shown by microstructural images.

Keywords: Peleg constant; kinetic model; nanoparticles coating; papaya; respiration rate; shelf life.