Evaluation of Ni-Based Flexible Resistance Temperature Detectors Fabricated by Laser Digital Pattering

Nanomaterials (Basel). 2021 Feb 25;11(3):576. doi: 10.3390/nano11030576.

Abstract

Temperature sensors are ubiquitous in every field of engineering application since temperature control is vital in operating, testing and monitoring various equipment systems. Herein, we introduce a facile and rapid laser digital patterning (LDP) process to fabricate low-cost, Ni-based flexible resistance temperature detectors (RTDs). Ni-based RTDs are directly generated on a thin flexible polyimide substrate (thickness: 50 µm) by laser-induced reductive sintering of a solution-processed nonstoichiometric nickel oxide (NiOx) nanoparticle thin film under ambient conditions. The shape of RTDs can be easily adjusted by controlling computer-aided design (CAD) data without using the physical patterning mask while the sensitivity (temperature coefficient of resistance (α) ~ 3.52 × 10-3 °C-1) of the sensors can be maintained regardless of shape and size of the sensor electrodes. The flexible Ni-based RTDs can operate over a wide temperature range up to 200 °C with excellent repeatability. Additionally, the Ni-based RTDs respond quickly to the temperature change and can operate in corrosive environments including water and seawater. Moreover, the Ni-based RTDs show a superior mechanical and electrical stability with a negligible resistance change up to a radius of curvature of 1.75 mm. Finally, a tape-pull test demonstrates the robust adhesion of Ni-based RTDs on the substrate.

Keywords: Ni electrodes; NiOx nanoparticle ink; flexible resistance temperature detector; laser digital patterning; laser-induced reductive sintering.