Disentangling Ethiopian Honey Bee (Apis mellifera) Populations Based on Standard Morphometric and Genetic Analyses

Insects. 2021 Feb 25;12(3):193. doi: 10.3390/insects12030193.

Abstract

The diversity and local differentiation of honey bees are subjects of broad general interest. In particular, the classification of Ethiopian honey bees has been a subject of debate for decades. Here, we conducted an integrated analysis based on classical morphometrics and a putative nuclear marker (denoted r7-frag) for elevational adaptation to classify and characterize these honey bees. Therefore, 660 worker bees were collected out of 66 colonies from highland, midland and lowland agro-ecological zones (AEZs) and were analyzed in reference to populations from neighboring countries. Multivariate morphometric analyses show that our Ethiopian samples are separate from Apis mellifera scutellata, A. m. jemenitica, A. m. litorea and A. m. monticola, but are closely related to A. m. simensis reference. Linear discriminant analysis showed differentiation according to AEZs in the form of highland, midland and lowland ecotypes. Moreover, size was positively correlated with elevation. Similarly, our Ethiopian samples were differentiated from A. m. monticola and A. m. scutellata based on r7-frag. There was a low tendency towards genetic differentiation between the Ethiopian samples, likely impacted by increased gene flow. However, the differentiation slightly increased with increasing elevational differences, demonstrated by the highland bees that showed higher differentiation from the lowland bees (FST = 0.024) compared to the midland bees (FST = 0.015). An allelic length polymorphism was detected (denoted as d) within r7-frag, showing a patterned distribution strongly associated with AEZ (X2 = 11.84, p < 0.01) and found predominantly in highland and midland bees of some pocket areas. In conclusion, the Ethiopian honey bees represented in this study are characterized by high gene flow that suppresses differentiation.

Keywords: Ethiopia; Tigray; classification; diversity; honey bee subspecies; morphometrics.