Genomic Edition of Ashbya gossypii Using One-vector CRISPR/Cas9

Bio Protoc. 2020 Jun 20;10(12):e3660. doi: 10.21769/BioProtoc.3660.

Abstract

The CRISPR/Cas9 system is a novel genetic tool which allows the precise manipulation of virtually any genomic sequence. In this protocol, we use a specific CRISPR/Cas9 system for the manipulation of Ashbya gossypii. The filamentous fungus A. gossypii is currently used for the industrial production of riboflavin (vitamina B2). In addition, A. gossypii produces other high-value compounds such as folic acid, nucleosides and biolipids. A large molecular toolbox is available for the genomic manipulation of this fungus including gene targeting methods, rapid assembly of heterologous expression modules and, recently, a one-vector CRISPR/Cas9 editing system adapted for A. gossypii that allows marker-free engineering strategies to be implemented. The CRISPR/Cas9 system comprises an RNA guided DNA endonuclease (Cas9) and a guide RNA (gRNA), which is complementary to the genomic target region. The Cas9 nuclease requires a 5'-NGG-3' trinucleotide, called protospacer adjacent motif (PAM), to generate a double-strand break (DSB) in the genomic target, which can be repaired with a synthetic mutagenic donor DNA (dDNA) by homologous recombination (HR), thus introducing a specific designed mutation. The CRISPR/Cas9 system adapted for A. gossypii largely facilitates the genomic edition of this industrial fungus.

Keywords: Ashbya gossypii; Biotechnology; CRISPR/Cas9; Gene editing; Genome engineering; One-vector.