Flavour distribution and release from gelatine-starch matrices

Food Hydrocoll. 2021 Mar:112:106273. doi: 10.1016/j.foodhyd.2020.106273.

Abstract

Microstructure design of protein-polysaccharide phase separated gels has been suggested as a strategy to nutritionally improve food products. Varying the phase volumes of a phase separated matrix may affect texture and overall flavour balance of the final product, which are both important for consumer acceptance. The aims of this study were to investigate how modifying the phase volumes of a gelatine-starch biphasic mixture affected aroma release, and how addition of sucrose affects phase separation, flavour distribution and aroma release. Biphasic gels of different microstructures with the same effective concentration of gelatine and starch in each phase were developed. Microstructure significantly affected aroma release in vitro but not in vivo when panellists (n = 5) chewed and swallowed the sample. Addition of sucrose (0-60%) to the biphasic mixture significantly reduced water activity, affected the microstructure and affected aroma distribution in each phase and subsequent release rates depending on the physicochemical properties of the aroma volatile. In general, affinity for the gelatine phase for the less hydrophobic, more volatile compounds was not significantly affected by sucrose concentration. Whereas an increased affinity for the starch phase for the more hydrophobic, less volatile compounds was observed with increased sucrose as the starch phase becomes more dispersed at sucrose concentrations between 40 and 60%. The results of this study may be of interest to researchers and industry to enable prediction of how reformulation, such as reduction of sucrose, to meet nutritional guidelines may affect the overall aroma balance of a phase separated food matrix.

Keywords: Aroma release; Gels; Microstructure; Phase separation.