Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments

J Hazard Mater. 2021 Jul 15:414:125466. doi: 10.1016/j.jhazmat.2021.125466. Epub 2021 Feb 19.

Abstract

Uranium (U) geochemistry and its isotopic compositions of reservoir sediments in U mine area were poorly understood. Herein, U and Th isotopic compositions were employed to investigate source apportionment and geochemical behavior of U in 41 reservoir sediments from a U mining area, Guangdong, China. The remarkably high contents of both total U (207.3-1117.7 mg/kg) and acid-leachable U (90.3-638.5 mg/kg) in the sediments exhibit a severe U contamination and mobilization-release risk. The U/Th activity ratios (ARs) indicate that all sediments have been contaminated apparently by U as a result of discharge of U containing wastewater, especially uranium mill tailings (UMT) leachate, while the variations of U/Th ARs are dominated by U geochemical behaviors (mainly redox process and adsorption). The U isotopic compositions (δ238U) showed a large variance through the sediment profile, varying from - 0.62 to - 0.04‰. The relation between δ238U and acid-leachable U fraction demonstrates that the U isotopic fractionation in sediments can be controlled by bedrock weathering (natural activity), UMT leachate (anthropogenic activity) and subsequent biogeochemical processes. The findings suggest that U-Th isotopes are a powerful tool to better understand U geochemical processes and enrichment mechanism in sediments that were affected by combined sources and driving forces.

Keywords: Enrichment mechanism; Reservoir sediments; Uranium; Uranium mill tailings; Uranium-thorium isotopes.

Publication types

  • Research Support, Non-U.S. Gov't