Transparent Triboelectric Nanogenerator Based on Thermoplastic Polyurethane Films

J Nanosci Nanotechnol. 2021 May 1;21(5):3072-3080. doi: 10.1166/jnn.2021.19143.

Abstract

This study aims at investigating flexible and transparent thermoplastic polyurethane (TPU) as a novel material for triboelectric nanogenerator (TENG) devices with a polyethylene terephthalate layer. Devices having TPU-either as a flat film or as electrospun micrometer-dimension fibers with varying concentrations of TPU-were tested. The best output performing device provided 21.4 V and 23 μA as open-circuit voltage and short-circuit current respectively, with the application of a small force of 0.33 N indicating the high efficiency of the device. Devices with flat films-obtained using the doctor-blade (DB) technique-have high transparency (80%) as well as high TENG output. The topography of the TPU layer, characterized by atomic force microscopy, reveals nanoscale roughness of the film surface. Finally, we demonstrate that gentle hand tapping on the TENG device can power upto 11 light-emitting diodes (LEDs). The high transparency, lightweight, simple fabrication, flexibility, and robust features of such device make it an added value for various optoelectronic applications.