Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment

ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10728-10740. doi: 10.1021/acsami.0c21579. Epub 2021 Mar 1.

Abstract

Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.

Keywords: Bi−Fe@Fe heterojunction; chemodynamic; facile synthesized strategy; multimodal imaging; phototherapy.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / radiation effects
  • Antineoplastic Agents / therapeutic use*
  • Apoptosis / drug effects
  • Bismuth / chemistry
  • Hep G2 Cells
  • Humans
  • Infrared Rays
  • Iron / chemistry
  • Iron / radiation effects
  • Metal Nanoparticles / chemistry
  • Metal Nanoparticles / radiation effects
  • Metal Nanoparticles / therapeutic use*
  • Mice
  • Multimodal Imaging
  • Neoplasms / diagnostic imaging*
  • Neoplasms / drug therapy*
  • Photochemotherapy
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / radiation effects
  • Photosensitizing Agents / therapeutic use*
  • Photothermal Therapy
  • Reactive Oxygen Species / metabolism
  • Theranostic Nanomedicine / methods*

Substances

  • Antineoplastic Agents
  • Photosensitizing Agents
  • Reactive Oxygen Species
  • Iron
  • Bismuth