Air pollution and airborne infection with mycobacterial bioaerosols: a potential attribution of soot

Int J Environ Sci Technol (Tehran). 2022;19(2):717-726. doi: 10.1007/s13762-021-03203-7. Epub 2021 Feb 21.

Abstract

Atmospheric pollutants are hypothesized to enhance the viability of airborne microbes by preventing them from degradation processes, thereby enhancing their atmospheric survival. In this study, Mycobacterium smegmatis is used as a model airborne bacteria, and different amounts of soot particles are employed as model air pollutants. The toxic effects of soot on aerosolized M. smegmatis are first evaluated and excluded by introducing them separately into a chamber, being sampled on a filter, and then cultured and counted. Secondly, the bacteria-soot mixture is exposed to UV with different durations and then cultured for bacterial viability evaluations. The results show that under UV exposure, the survival rates of the low-, medium-, and high-soot groups are 1.1 (±0.8) %, 70.9 (±4.3) %, and 61.0 (±17.6) %, respectively. This evidence significantly enhanced survival rates by soot at all UV exposures, though the combinations of UV exposure and soot amounts revealed a changing pattern of survival rates. The possible influence by direct and indirect effects of UV-damaging mechanisms is proposed. This study indicates the soot-induced survival rate enhancements of M. smegmatis under UV stress conditions, representing the possible relations between air pollution and the extended pathogenic viability and, therefore, increased airborne infection probability.

Keywords: Airborne pathogen; Combustion-related pollutants; Non-tuberculosis mycobacterium; Ultraviolet stress.