Generalized temperature dependence model for anammox process kinetics

Sci Total Environ. 2021 Jun 25:775:145760. doi: 10.1016/j.scitotenv.2021.145760. Epub 2021 Feb 11.

Abstract

Temperature is a key operational factor influencing the anammox process kinetics. In particular, at temperatures below 15 °C, the specific anammox activity (SAA) considerably decreases. This study aimed to describe the temperature dependence of the anammox process kinetics in the temperature range from 10 to 55 °C, including the specific characteristics of "cold anammox". The commonly used Arrhenius and extended and modified Ratkowsky equations were examined. The Ratkowsky equations yielded a strong correlation (coefficient of determination, R2 = 0.93-0.96) between the measured and predicted data over the analyzed temperature range (10-55 °C). However, these equations could not correctly reflect the anammox temperature dependence at temperatures below 15 °C (R2 = 0.36-0.48). Therefore, a new generalized temperature model was proposed. The generalized temperature equation (GTE) considered the division of the analyzed temperature range into three temperature ranges: 10-15 °C, 15-35 °C and 35-55 °C. The ranges correspond to "cold anammox", "(low) mesophilic anammox" and "thermophilic anammox". The applied approach yielded a strong correlation between the measured and predicted SAA (R2 = 0.97) over the temperature range from 10 to 55 °C and over the low-temperature range from 10 to 15 °C (R2 = 0.99). Overall, the GTE could enhance the predictions of the temperature dependence of the anammox process kinetics. The GTE can help examine anammox-based bioaugmentation systems operating at both high temperatures (sidestream reactors) and low temperatures (mainstream reactors).

Keywords: Activation energy; Anammox; Arrhenius equation; Ratkowsky equation; Temperature dependence.