Study on Caenorhabditis Elegans as a Combined Model of Microdosimetry and Biology

Dose Response. 2021 Feb 11;19(1):1559325821990125. doi: 10.1177/1559325821990125. eCollection 2021 Jan-Mar.

Abstract

Microdosimetry is a tool for the investigation of microscopic energy deposition of ionizing radiation. This work used Caenorhabditis elegans as a model to estimate the microdosimetric deposition level at the 60Co gamma radiation. Monte Carlo software PHITS was employed to establish irradiated nematodes model. The dose deposition of the entire body and gonad irradiated to 100 Gy was calculated. The injury levels of radiation were evaluated by the detection of biological indicators. The result of microdosimetric experiment suggested that the dose of whole body of nematodes was estimated to be 99.9 ± 57.8 Gy, ranging from 19.6 to 332.2 Gy. The dose of gonad was predicted to be 129.4 ± 558.8 Gy (9.5-6597 Gy). The result of biological experiment suggested that there were little changes in the length of nematodes after irradiation. However, times of head thrash per minute and the spawning yield in 3 consecutive days decreased 27.1% and 94.7%, respectively. Nematodes in the irradiated group displayed heterogeneity. Through contour analysis, trends of behavior kinematics and reproductive capacity of irradiated nematodes proved to be consistent with the dose distribution levels estimated by microdosimetric model. Finally, C. elegans presented a suitable combined model of microdosimetry and biology for studying radiation.

Keywords: animal model; caenorhabditis elegans; microdosimetry; radiation.