Framework for Modeling Lead in Premise Plumbing Systems Using EPANET

J Water Resour Plan Manag. 2020 Dec 1;24(12):10.1061/(asce)wr.1943-5452.0001304. doi: 10.1061/(asce)wr.1943-5452.0001304.

Abstract

The lead contamination of drinking water in homes and buildings remains an important public health concern. In order to assess strategies to measure and reduce exposure to lead from drinking water, models are needed that incorporate the multiple factors affecting lead concentrations in premise plumbing systems (PPS). In this study, the use of EPANET, a commonly used hydraulic and water quality model for water distribution systems, was assessed for its ability to predict lead concentrations in PPS. The model was calibrated and validated against data collected from multiple experiments in the EPA's Home Plumbing Simulator that contained a lead service line and other lead sources. The EPANET's first-order saturation kinetics model was used to simulate the dissolution of lead in the lead service line. A version of EPANET was developed to include one-dimensional mass dispersion. Modeling results were compared to experimental data, and recommendations were made to improve the EPANET-based modeling framework for predicting lead concentrations in PPS.