Genome announcement of Steinernema khuongi and its associated symbiont from Florida

G3 (Bethesda). 2021 Apr 15;11(4):jkab053. doi: 10.1093/g3journal/jkab053.

Abstract

Citrus root weevil (Diaprepes abbreviates) causes significant yield loss in citrus, especially in Florida. A promising source of control for this pest is biological control agents, namely, native entomopathogenic nematodes (EPNs) within the genus Steinernema. Two species of endemic EPN in Florida are S. diaparepesi, abundant within the central ridge, and S. khuongi, dominating the flatwood regions of the state. These citrus-growing regions differ significantly in their soil habitats, which impacts the potential success of biological control measures. Although the genome sequence of S. diaprepesi is currently available, the genome sequence of S. khuongi and identity of the symbiotic bacteria is still unknown. Understanding the genomic differences between these two nematodes and their favored habitats can inform successful biological control practices. Here, MiSeq libraries were used to simultaneously sequence and assemble the draft genome of S. khuongi and its associated symbionts. The final draft genome for S. khuongi has 8,794 contigs with a total length of ∼82 Mb, a largest contig of 428,226 bp, and N50 of 46 kb; its BUSCO scores indicate that it is > 86% complete. An associated bacterial genome was assembled with a total length of ∼3.5 Mb, a largest contig at 116,532 bp, and N50 of 17,487 bp. The bacterial genome encoded 3,721 genes, similar to other Xenorhabdus genomes. Comparative genomics identified the symbiotic bacteria of S. khuongi as Xenorhabdus poinarii. These new draft genomes of a host and symbiont can be used as a valuable tool for comparative genomics with other EPNs and its symbionts to understand host range and habitat suitability.

Keywords: endosymbiont; entomopathogenic; genome; nematode.

MeSH terms

  • Animals
  • Florida
  • Rhabditida*
  • Symbiosis
  • Xenorhabdus*

Supplementary concepts

  • Xenorhabdus poinarii