Effectiveness of two lightweight aggregates for the removal of heavy metals from contaminated urban stormwater

J Contam Hydrol. 2021 May:239:103778. doi: 10.1016/j.jconhyd.2021.103778. Epub 2021 Feb 13.

Abstract

Contaminated runoff stormwater from urban environments carries several contaminants to water bodies, thereby affecting the health of living beings and ecological systems. Among all the contaminants, heavy metals possess high toxicity and impact water quality. The stormwater management through green infrastructures composed by adequate materials can provide an excellent solution, simultaneously ensuring the appropriate hydraulic performance and contaminant removal rate. The proposed research aims at the elimination of heavy metals (i.e. Ni, Cu, Zn, Cd and Pb) through column experiments by selecting four possible and novel treatments for urban stormwaters. Two lightweight aggregates (Arlita and Filtralite) were tested separately and in combination with CaCO3. The study determines the efficiency and lifetime of each treatment by varying the interaction time between the filter materials and contaminated water and the type of filter. The observed removal mechanisms were closely related to the changes in pH due to the interactions between water and different materials. The reductions in heavy metal concentrations depend on the type of heavy metal, interaction time and type of filter material. Results indicate that the combined use of CaCO3, Arlita and Filtralite did not improve the removal rates of heavy metals. However, it decreased the efficiency of the decontamination process. The significance of this study lies on the removal efficiency of Arlita and Filtralite as decontamination treatments. Both the tested lightweight aggregates led to a considerable decrease in the heavy metal concentrations in urban runoff stormwater although Filtralite was particularly efficient. After 4 weeks, the treatments were still successfully reducing and stabilising 99% of the heavy metals in the contaminated stormwater. These results confirm that the lifetime of the tested lightweight aggregates is adequate and emphasise, as a novel application of these materials, on their feasibility for the improvement of urban stormwater quality.

Keywords: Arlita; Calcite; Column experiments; Environmental pollution; Filtralite; Water quality.

MeSH terms

  • Metals, Heavy* / analysis
  • Rain
  • Water Pollutants, Chemical* / analysis
  • Water Pollution
  • Water Purification*
  • Water Quality

Substances

  • Metals, Heavy
  • Water Pollutants, Chemical