Cyclodextrin/Adamantane-Mediated Targeting of Inoculated Bacteria in Mice

Bioconjug Chem. 2021 Mar 17;32(3):607-614. doi: 10.1021/acs.bioconjchem.1c00061. Epub 2021 Feb 23.

Abstract

Cyclodextrin (CD)-based host-guest interactions with adamantane (Ad) have demonstrated use for functionalizing living cells in vitro. The next step in this supramolecular functionalization approach is to explore the concept to deliver chemical cargo to living cells in vivo, e.g., inoculated bacteria, in order to study their dissemination. We validated this concept in two rodent Staphylococcus aureus models. Bacteria (1 × 108 viable S. aureus) were inoculated by (1) intramuscular injection or (2) intrasplenic injection followed by dissemination throughout the liver. The bacteria were prefunctionalized with 99mTc-UBI29-41-Ad2 (primary vector), which allowed us to both determine the bacterial load and create an in vivo target for the secondary host-vector (24 h post-inoculation). The secondary vector, i.e., chemical cargo delivery system, made use of a 111In-Cy50.5CD9PIBMA39 polymer that was administered intravenously. Bacteria-specific cargo delivery as a result of vector complexation was evaluated by dual-isotope SPECT imaging and biodistribution studies (111In), and by fluorescence (Cy5); these evaluations were performed 4 h post-injection of the secondary vector. Mice inoculated with nonfunctionalized S. aureus and mice without an infection served as controls. Dual-isotope SPECT imaging demonstrated that 111In-Cy50.5CD9PIBMA39 colocalized with 99mTc-UBI29-41-Ad2-labeled bacteria in both muscle and liver. In inoculated muscle, a 2-fold higher uptake level (3.2 ± 1.0%ID/g) was noted compared to inoculation with nonfunctionalized bacteria (1.9 ± 0.4%ID/g), and a 16-fold higher uptake level compared to noninfected muscle (0.2 ± 0.1%ID/g). The hepatic accumulation of the host-vector was nearly 10-fold higher (27.1 ± 11.1%ID/g) compared to the noninfected control (2.7 ± 0.3%ID/g; p < 0.05). Fluorescence imaging of the secondary vector corroborated SPECT-imaging and biodistribution findings. We have demonstrated that supramolecular host-guest complexation can be harnessed to achieve an in vivo cargo delivery strategy, using two different bacterial models in soft tissue and liver. This proof-of-principle study paves a path toward developing innovative drug delivery concepts via cell functionalization techniques.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adamantane / pharmacology*
  • Animals
  • Cyclodextrins / pharmacology*
  • Drug Delivery Systems*
  • Mice
  • Proof of Concept Study
  • Staphylococcus aureus / drug effects*
  • Tomography, Emission-Computed, Single-Photon / methods

Substances

  • Cyclodextrins
  • Adamantane