Enzymatic synthesis of structured lipids from grape seed (Vitis vinifera L.) oil in associated packed bed reactors

Biotechnol Appl Biochem. 2022 Feb;69(1):101-109. doi: 10.1002/bab.2085. Epub 2020 Dec 27.

Abstract

Triacylglycerols (TAGs) can be modified to increase the absorption of fatty acids, prevent obesity, and treat fat malabsorption disorders and metabolic diseases. Medium-long-medium (MLM)-type TAGs, which contain medium-chain fatty acids in the sn-1 and sn-3 positions of the glycerol backbone and a long-chain fatty acid in the sn-2 position, show particularly interesting nutritional characteristics. This study aimed to synthesize MLM-type TAGs by enzymatic acidolysis of grape seed oil with medium-chain capric acid (C10:0) in associated packed bed reactors. The reaction was carried out during 120 H, at 45 °C, using lipase from Rhizomucor miehei (Lipozyme® RM IM). The residence time distribution of reagents in the reactor was quantified to evaluate the reactor behavior and to diagnose the existence of preferential paths. The reaction progress was monitored by analyzing TAG composition and, at the steady state (after 48 H of reaction), the incorporation degree achieved a value of 39.91 ± 2.77%. To enhance the capric acid incorporation, an acidolysis reaction in associated packed bed reactors was performed. The results showed a good operational stability of the biocatalyst, revealing values of half-life 209.64 H, 235.63 H of packed bed and associated packed bed reactor, respectively, and a deactivation coefficient 0.0061 H-1 .

Keywords: acidolysis; associated packed bed reactor; grape seed oil; structured lipids.

MeSH terms

  • Fatty Acids
  • Triglycerides
  • Vitis*

Substances

  • Fatty Acids
  • Triglycerides