Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials

Adv Mater. 2021 Apr;33(14):e2008755. doi: 10.1002/adma.202008755. Epub 2021 Feb 22.

Abstract

Measurement of mechanical stresses, such as compression, shear, and tensile stresses, contributes toward achieving a safer and healthier life. In particular, the detection of weak compression stresses is required for healthcare monitoring and biomedical applications. Compression stresses in the order of 106 -1010 Pa have been visualized and/or quantified using mechano-responsive materials in previous works. However, in general, it is not easy to detect compression stresses weaker than 103 Pa using conventional mechano-responsive materials because the dynamic motion of the rigid mechano-responsive molecules is not induced by such a weak stress. In the present work, weak compression stresses in the order of 100 -103 Pa are visualized and measured via the integration of stimuli-responsive materials, such as layered polydiacetylene (PDA) and dry liquid (DL), through response cascades. DLs consisting of liquid droplets covered by solid particles release the interior liquid and collapse with application of a weak compression stress. The color of the layered PDA is changed by the spilled liquid as a chemical stress. A variety of weak compression stresses, such as expiratory pressure, are visualized and colorimetrically measured using the paper-based device of the integrated stimuli-responsive materials. Diverse mechano-sensing devices can be designed via the integration of stimuli-responsive materials.

Keywords: colorimetric detection of compression stress; compression-stress sensors; conjugated polymers; dry liquids; layered polydiacetylene; stimuli-responsive materials.

Publication types

  • Review