Power Profiling in U23 Professional Cyclists During a Competitive Season

Int J Sports Physiol Perform. 2021 Jun 1;16(6):881-889. doi: 10.1123/ijspp.2020-0200. Epub 2021 Feb 19.

Abstract

Purpose: The aim of this study was to investigate changes in the power profile of U23 professional cyclists during a competitive season based on maximal mean power output (MMP) and derived critical power (CP) and work capacity above CP (W') obtained during training and racing.

Methods: A total of 13 highly trained U23 professional cyclists (age = 21.1 [1.2] y, maximum oxygen consumption = 73.8 [1.9] mL·kg-1·min-1) participated in this study. The cycling season was split into pre-season and in-season. In-season was divided into early-, mid-, and late-season periods. During pre-season, a CP test was completed to derive CPtest and W'test. In addition, 2-, 5-, and 12-minute MMP during in-season were used to derive CPfield and W'field.

Results: There were no significant differences in absolute 2-, 5-, and 12-minute MMP, CPfield, and W'field between in-season periods. Due to changes in body mass, relative 12-minute MMP was higher in late-season compared with early-season (P = .025), whereas relative CPfield was higher in mid- and late-season (P = .031 and P = .038, respectively) compared with early-season. There was a strong correlation (r = .77-.83) between CPtest and CPfield in early- and mid-season but not late-season. Bland-Altman plots and standard error of estimates showed good agreement between CPtest and in-season CPfield but not between W'test and W'field.

Conclusion: These findings reveal that the power profile remains unchanged throughout the in-season, except for relative 12-minute MMP and CPfield in late-season. One pre-season and one in-season CP test are recommended to evaluate in-season CPfield and W'field.

Keywords: cycling; racing; training.

MeSH terms

  • Adult
  • Bicycling*
  • Exercise Test*
  • Humans
  • Methylhistidines
  • Oxygen Consumption
  • Seasons
  • Young Adult

Substances

  • Methylhistidines
  • ovothiol A