Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism

Adv Mater. 2021 Mar;33(12):e2007819. doi: 10.1002/adma.202007819. Epub 2021 Feb 19.

Abstract

Doping of materials beyond the dopant solubility limit remains a challenge, especially when spatially nonuniform doping is required. In 2D materials with a high surface-to-volume ratio, such as transition metal dichalcogenides, various post-synthesis approaches to doping have been demonstrated, but full control over spatial distribution of dopants remains a challenge. A post-growth doping of single layers of WSe2 is performed by adding transition metal (TM) atoms in a two-step process, which includes annealing followed by deposition of dopants together with Se or S. The Ti, V, Cr, and Fe impurities at W sites are identified by using transmission electron microscopy and electron energy loss spectroscopy. Remarkably, an extremely high density (6.4-15%) of various types of impurity atoms is achieved. The dopants are revealed to be largely confined within nanostripes embedded in the otherwise pristine WSe2 . Density functional theory calculations show that the dislocations assist the incorporation of the dopant during their climb and give rise to stripes of TM dopant atoms. This work demonstrates a possible spatially controllable doping strategy to achieve the desired local electronic, magnetic, and optical properties in 2D materials.

Keywords: dislocation migration; doping; nanostripes; transition metal dichalcogenides.