CuCr2O4@CaFe-LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater

J Colloid Interface Sci. 2021 Jun:591:193-202. doi: 10.1016/j.jcis.2021.01.080. Epub 2021 Feb 2.

Abstract

Wastewater from the olive mill constitutes a serious environmental concern, as it is characterized by a high inorganic and organic load. Here, a hybrid photocatalyst based on calcined Ca-Fe-LDH was successfully synthesized for the degradation of phenolic compounds and the removal of chemical oxygen demand (COD) from the high-strength olive mill wastewater (OMW). The catalyst (CuCr2O4@CaFe-LDO) displayed a stable ~4.48 µA cm-2 photocurrent response, a 2.56 eV bandgap and a wide variety of pores with an average size of 12.51 nm. 1.0 g CuCr2O4@CaFe-LDO achieved 66% COD removal after 300 mins without an oxidant in the dark, while after 180 mins of reaction, CuCr2O4@CaFe-LDO/K2S2O8/sunlight system resulted in ~99% and 98.3% COD and colour removal. Seven phenolic compounds were found in the crude OMW, with hydroxytyrosol (76.84%) and tyrosol (15.14%) being the main ones. The final pH of the sample treated increased from 4.3 to 7.3, which confirmed the degradation of phenolics and fatty acids in the OMW. OH, SO4-, h+ and O2- contributed notably to the degradation of polyphenols and the spent catalyst was easily and rapidly recovered from the bulk solution due to its saturation magnetization of 54.7 emu g-1.

Keywords: BOD(5)/COD ratio; Calcined CaFe–LDH; Layered double oxides; Polyphenols mineralization; Spinel oxide nanoparticles.