A Substituent Effect on Two-Photon Absorption of Diphenylacetylene Derivatives with an Electron-Donating/Withdrawing Group

J Phys Chem A. 2021 Mar 4;125(8):1688-1695. doi: 10.1021/acs.jpca.0c10545. Epub 2021 Feb 18.

Abstract

Two-photon absorption for diphenylacetylene derivatives with an electron-donating (ED) or electron-withdrawing (EW) group (DPA-Rs) was investigated by high-sensitivity optical-probing photoacoustic spectroscopy. Two-photon absorption spectra and two-photon absorption cross sections σ(2) for DPA-Rs were successfully obtained. Two-photon absorption spectra of DPA-Rs with stronger ED or EW groups display more significant red-shifts and larger σ(2) values. Simulated two-photon absorption spectra, using time-dependent density functional theory within the Tamm-Dancoff approximation, compared well with the experimental spectra. Based on the three-state model, the substituent effect on the two-photon absorption for DPA-Rs was expected to manifest in the transition dipole moments and detuning energies. Information obtained from investigating the monosubstituent effect on two-photon absorption of DPA is critical for an improved understanding of two-photon absorption.