An ultrasensitive colorimetric assay based on a multi-amplification strategy employing Pt/IrO2@SA@HRP nanoflowers for the detection of progesterone in saliva samples

Anal Methods. 2021 Mar 11;13(9):1164-1171. doi: 10.1039/d1ay00053e.

Abstract

Progesterone (P4) belongs to a factor that affects stress response and is a potential carcinogen, and saliva levels are expected to be a standard measurement for clinical diagnosis. In this study, a new type of nanoflower with both recognition functionality and catalytic substrate ability was prepared by copper phosphate, Pt/IrO2 nanocomposites (Pt/IrO2 NPs), streptavidin (SA) and horseradish peroxidase (HRP) via a one-pot co-precipitation strategy. Due to the enhanced catalytic activity and stability of Pt/IrO2@SA@HRP nanoflowers, we developed a powerful and sensitive multiple-catalysis ELISA to monitor progesterone in saliva. Multiple-catalysis ELISA based on a specific antibody and Pt/IrO2@SA@HRP nanoflowers exhibited a linear interval range from 0.217 ng mL-1 to 7.934 ng mL-1. The median inhibitory concentration (IC50) for progesterone is 1.311 ng mL-1 and the limit of detection (LOD = IC10) is 0.076 ng mL-1 in the proposed method. Satisfactory recoveries were in a range of 79.6-107% with an acceptable coefficient of variation (below 10.6%). Results of the multiple-catalysis ELISA and LC-MS/MS had a good coincidence. Our result unraveled that multiple-catalysis ELISA is a potentially serviceable tool for the detection of progesterone in saliva.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Liquid
  • Colorimetry*
  • Horseradish Peroxidase
  • Iridium
  • Nanostructures
  • Platinum
  • Progesterone*
  • Saliva
  • Streptavidin
  • Tandem Mass Spectrometry

Substances

  • iridium oxide
  • Iridium
  • Platinum
  • Progesterone
  • Streptavidin
  • Horseradish Peroxidase