Interrogation of Electrochemical Aptamer-Based Sensors via Peak-to-Peak Separation in Cyclic Voltammetry Improves the Temporal Stability and Batch-to-Batch Variability in Biological Fluids

ACS Sens. 2021 Mar 26;6(3):1199-1207. doi: 10.1021/acssensors.0c02455. Epub 2021 Feb 18.

Abstract

Electrochemical, aptamer-based (E-AB) sensors support continuous, real-time measurements of specific molecular targets in complex fluids such as undiluted serum. They achieve these measurements by using redox-reporter-modified, electrode-attached aptamers that undergo target binding-induced conformational changes which, in turn, change electron transfer between the reporter and the sensor surface. Traditionally, E-AB sensors are interrogated via pulse voltammetry to monitor binding-induced changes in transfer kinetics. While these pulse techniques are sensitive to changes in electron transfer, they also respond to progressive changes in the sensor surface driven by biofouling or monolayer desorption and, consequently, present a significant drift. Moreover, we have empirically observed that differential voltage pulsing can accelerate monolayer desorption from the sensor surface, presumably via field-induced actuation of aptamers. Here, in contrast, we demonstrate the potential advantages of employing cyclic voltammetry to measure electron-transfer changes directly. In our approach, the target concentration is reported via changes in the peak-to-peak separation, ΔEP, of cyclic voltammograms. Because the magnitude of ΔEP is insensitive to variations in the number of aptamer probes on the electrode, ΔEP-interrogated E-AB sensors are resistant to drift and show decreased batch-to-batch and day-to-day variability in sensor performance. Moreover, ΔEP-based measurements can also be performed in a few hundred milliseconds and are, thus, competitive with other subsecond interrogation strategies such as chronoamperometry but with the added benefit of retaining sensor capacitance information that can report on monolayer stability over time.

Keywords: aptamer; biosensor; cyclic voltammetry; drift correction; undiluted serum.

MeSH terms

  • Aptamers, Nucleotide*
  • Biosensing Techniques*
  • Electrochemical Techniques
  • Electrodes
  • Electron Transport

Substances

  • Aptamers, Nucleotide