Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis

Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21100-21115. doi: 10.1002/anie.202100270. Epub 2021 Jun 18.

Abstract

The mainstream applications of visible-light photoredox catalysis predominately involve outer-sphere single-electron transfer (SET) or energy transfer (EnT) processes of precious metal RuII or IrIII complexes or of organic dyes with low photostability. Earth-abundant metal-based Mn Ln -type (M=metal, Ln =polydentate ligands) complexes are rapidly evolving as alternative photocatalysts as they offer not only economic and ecological advantages but also access to the complementary inner-sphere mechanistic modes, thereby transcending their inherent limitations of ultrashort excited-state lifetimes for use as effective photocatalysts. The generic process, termed visible-light-induced homolysis (VLIH), entails the formation of suitable light-absorbing ligated metal-substrate complexes (Mn Ln -Z; Z=substrate) that can undergo homolytic cleavage to generate Mn-1 Ln and Z. for further transformations.

Keywords: 3d transition metals; dissociative ligand-to-metal charge transfer; inner-sphere electron transfer; photoredox catalysis; visible-light-induced homolysis.

Publication types

  • Review