Vγ9Vδ2 T cells strengthen cisplatin inhibition activity against breast cancer MDA-MB-231 cells by disrupting mitochondrial function and cell ultrastructure

Cancer Cell Int. 2021 Feb 16;21(1):113. doi: 10.1186/s12935-021-01815-0.

Abstract

Background: Breast cancer ranks second of new cases and fifth of death in 2018 worldwide. Cis-platinum (CDDP) has been used as a chemotherapy to treat breast cancer for years. However, CDDP can adversely disrupt immune function of host. Thus, development of new protocol that can minimize side effect and meanwhile elevate clinical efficacy of CDDP will eventually benefit cancer patients. Since Vγ9Vδ2 T cells can up-regulate immune function of cancer patients, therefore, our hypothesis is that introduction of Vγ9Vδ2 T cells could potentiate CDDP efficacy against breast cancer.

Methods: We used breast cancer cell line MDA-MB-231 as model cell to test our hypothesis. The cancer cell viability in vitro in the context of different dose of CDDP was analyzed by flow cytometry. The cytoskeleton alteration was visualized by confocal microscopy, and the ultrastructure of cell membrane was observed by atomic force microscopy. The mitochondrial function of MDA-MB-231 cells was detected as well by flow cytometry.

Results: Comparing to either Vγ9Vδ2 T cells or CDDP alone, Vγ9Vδ2 T cells plus CDDP could more strikingly induce MDA-MB-231 cell membrane ultrastructure disruption and cytoskeleton disorder, and more significantly enhance the inhibition of CDDP on proliferation of MDA-MB-231 cells. At the same time, Vγ9Vδ2 T cells strengthened CDDP-induced mitochondrial dysfunction of cancer cells.

Conclusion: This work revealed that Vγ9Vδ2 T cells could synergistically enhance the inhibition activity of CDDP against breast cancer cells. Meanwhile, this in vitro proof-of-concept study implied the clinical prospect of the combining application of Vγ9Vδ2 T cells and CDDP in breast cancer therapy.

Keywords: Cisplatin; Inhibitory effect; MDA-MB-231 cells; Vγ9Vδ2 T cell.