Development of photoluminescent, superhydrophobic, and electrically conductive cotton fibres

Luminescence. 2021 Jun;36(4):964-976. doi: 10.1002/bio.4024. Epub 2021 Feb 16.

Abstract

A simple method for the preparation of multifunctional nanocomposite was developed towards the production of water-repellent, electrically conductive, and photoluminescent film onto cotton fibres. The nanocomposite was composed of lanthanide-doped strontium aluminium oxide and silicon rubber dispersed in petroleum ether. The electrically conductive fabric was woven from nickel strips twisted with cotton filaments as core yarns, which were wrapped with pure cotton yarns. The nanoparticles (NPs) of lanthanide-doped strontium aluminium oxide were mixed with environmentally friendly room-temperature vulcanizing silicon rubber (RTV-SR) dissolved in petroleum ether to give the silicon rubber/strontium aluminate nanocomposites. The produced nanocomposites were applied onto electrically conductive cotton/nickel fibres using spray-coating technology. The surface of the cotton/nickel fibres showed different hierarchical morphologies depending on the total content of the silicon rubber. Additionally, the superhydrophobic effect was found to be improved upon increasing the total content of the luminescence pigment NPs. The morphologies of the prepared phosphor NPs were determined using transmission electron microscopy (TEM). The generated transparent luminescence film demonstrated an absorbance peak at 358 nm and an emission peak at 515 nm. Photoluminescence of cotton fibres was monitored with the generation of different colours, including grey, green-yellow, bright white, and turquoise shades as recognized using CIE Laboratory colorimetric parameters. The emission, excitation, lifetime, and decay time spectra of the phosphorescent spray-coated cotton samples were studied. The surface morphologies and chemical compositions of the spray-coated cotton/nickel were investigated using wavelength-dispersive X-ray fluorescence (WD-XRF), scanning electron microscope (SEM), Fourier-transform infrared spectra (FTIR), and energy-dispersive X-ray analyzer (EDAX). The superhydrophobic effects were characterized by measuring static water contact angle. The comfort characteristics of the treated cotton/nickel substrates were assessed by investigating their air permeability and stiffness. The treated cotton/nickel fabrics also displayed an antimicrobial activity. The results displayed water repellence with high electrical conductivity and photoluminescence properties.

Keywords: cotton/nickel fabric; electrically conductive; lanthanide-doped strontium aluminate; phosphorescence; silicon rubber; spray-coating.

MeSH terms

  • Cotton Fiber*
  • Electric Conductivity
  • Hydrophobic and Hydrophilic Interactions
  • Luminescence
  • Nanocomposites*