Characterization of engine lubricants by fluorescence spectroscopy and chemometrics

Spectrochim Acta A Mol Biomol Spectrosc. 2021 May 5:252:119539. doi: 10.1016/j.saa.2021.119539. Epub 2021 Feb 4.

Abstract

In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) combined with excitation-emission matrix fluorescence (EEMF) were used to determine the most efficient excitation wavelengths of engine lubricants; identify their fluorophores; classify them and look for correlations between their fluorescence and their physical parameters. EEMF spectra were obtained for the different samples in the range of 260 to 600 nm, and 300 to 700 nm for excitation and emission wavelengths respectively. PCA and PARAFAC showed that the efficient excitation wavelengths for engine lubricants are 300, 350, 400, 450 and 470 nm. These five wavelengths represented the maxima of the PARAFAC recovered excitation profiles, of which two were attributed to fluorene and pyrene. The relative proportions of the PARAFAC retrieved components were used to classify engine lubricants with a satisfactory percentage of classification of 70%. Finally, a good correlation was obtained between some physical parameters (particularly the viscosity) of engine lubricants and their fluorescence.

Keywords: Chemometrics; Efficient excitation; Engine lubricants; Fluorescence.