Ionic Transport and Sieving Properties of Sub-nanoporous Polymer Membranes with Tunable Channel Size

ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9015-9026. doi: 10.1021/acsami.0c22689. Epub 2021 Feb 15.

Abstract

Bioinspired nanoporous membranes show great potential in ionic separation and water filtration by offering high selectivity with less permeation resistance. However, complex processes always limit their applications. Here, we report a convenient approach to introduce ionic selective channels in a micron-thick polycarbonate membrane through swift heavy ion irradiation accompanied by UV sensitization and pulsed-electrical etching. The characteristic dimension of channels was tuned through regulating energy loss of the incident ion and UV sensitization time of the membrane, resulting in the sub-nanoporous membranes with mean channel diameter ranging from <2.4 to 9.7 Å. These membranes showed the voltage-activated ionic transport properties associated with the dehydration effect, and the corresponding I-V characteristics were related to ionic strength, solution pH, ionic type, and channel diameter. It was found that the transmembrane conduction of multivalent ions was severely suppressed compared to monovalent ions, until the size of the membrane channel was comparable to the hydrated diameter of multivalent ions. Ionic sieving experiments also demonstrated the excellent ionic valence selectivity of the membrane. Even for the membrane with a channel diameter close to 1 nm, the Li+/Mg2+ separation ratio was still as high as 40, and an even higher separation ratio was found for Li+/La3+ (>3000).

Keywords: ion irradiation; ion transport; ionic sieving; nanoporous membrane; sub-nanochannel.