Identification of iron and sulfate release processes during riverbank filtration using chemical mass balance modeling

Environ Geochem Health. 2021 Sep;43(9):3583-3596. doi: 10.1007/s10653-021-00850-0. Epub 2021 Feb 13.

Abstract

Various hydrogeochemical processes can modify the quality of river water during riverbank filtration (RBF). Identifying the subsurface processes responsible for the bank-filtered water quality is challenging, but essential for predicting water quality changes and determining the necessity of post-treatment. However, no systematic approach for this has been proposed yet. In this study, the subsurface hydrogeochemical processes that caused the high concentrations of total iron (Fe) and sulfate (SO42-) in the bank-filtered water were investigated at a pilot-scale RBF site in South Korea. For this purpose, water quality variations were monitored in both the extraction well and the adjacent river over five months. The volumetric mixing ratio between the river water and the native groundwater in the RBF well was calculated to understand the effect of mixing on the quality of water from the well and to assess the potential contribution of subsurface reactions to water quality changes. To identify the subsurface processes responsible for the evolution of Fe and SO42- during RBF, an inverse modeling based on the chemical mass balance was conducted using the water quality data and the calculated volumetric mixing ratio. The modeling results suggest that pyrite oxidation by abundant O2 present in an unsaturated zone could be a primary process explaining the evolution of total Fe and SO42- during RBF at the study site. The presence of pyrite in the aquifer was indirectly supported by iron sulfate hydroxide (Fe(SO4)(OH)) detected in oxidized aquifer sediments.

Keywords: Chemical mass balance; Inverse modeling; Iron; Riverbank filtration; Sulfate.

MeSH terms

  • Filtration
  • Groundwater*
  • Iron
  • Rivers
  • Sulfates / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Sulfates
  • Water Pollutants, Chemical
  • Iron