MinYS: mine your symbiont by targeted genome assembly in symbiotic communities

NAR Genom Bioinform. 2020 Jul 3;2(3):lqaa047. doi: 10.1093/nargab/lqaa047. eCollection 2020 Sep.

Abstract

Most metazoans are associated with symbionts. Characterizing the effect of a particular symbiont often requires getting access to its genome, which is usually done by sequencing the whole community. We present MinYS, a targeted assembly approach to assemble a particular genome of interest from such metagenomic data. First, taking advantage of a reference genome, a subset of the reads is assembled into a set of backbone contigs. Then, this draft assembly is completed using the whole metagenomic readset in a de novo manner. The resulting assembly is output as a genome graph, enabling different strains with potential structural variants coexisting in the sample to be distinguished. MinYS was applied to 50 pea aphid resequencing samples, with variable diversity in symbiont communities, in order to recover the genome sequence of its obligatory bacterial symbiont, Buchnera aphidicola. It was able to return high-quality assemblies (one contig assembly in 90% of the samples), even when using increasingly distant reference genomes, and to retrieve large structural variations in the samples. Because of its targeted essence, it outperformed standard metagenomic assemblers in terms of both time and assembly quality.