Synthesis of Multi-Functional Nano-Vectors for Target-Specific Drug Delivery

Polymers (Basel). 2021 Jan 30;13(3):451. doi: 10.3390/polym13030451.

Abstract

Magnetic nanoparticles have gained attention in cancer therapy due to their non-toxic properties and high bio-compatibility. In this report, we synthesize a dual-responsive magnetic nanoparticle (MNP) that is sensitive to subtle pH and temperature change as in the tumor microenvironment. Thus, the functional doxorubicin (DOX)-loaded MNP (DOX-PNIPAM-PMAA@Fe3O4) can perform specific DOX releases in the cancer cell. The particle was characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta-potential, Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The microscopy data revealed the particle as having a spherical shape. The zeta-potential and size distribution analysis data demonstrated the difference for the stepwise modified MNPs. The FTIR spectrum showed characteristic absorption bands of NH2-SiO2@Fe3O4, CPDB@Fe3O4, PMAA@Fe3O4, and PNIPAM-PMAA@Fe3O4. Drug-loading capacity and releasing efficiency were evaluated under different conditions. Through an in vitro analysis, we confirmed that PNIPAM-PMAA@Fe3O4 has enhanced drug releasing efficiency under acidic and warmer conditions. Finally, cellular uptake and cell viability were estimated via different treatments in an MDA-MB-231 cell line. Through the above analysis, we concluded that the DOX-loaded particles can be internalized by cancer cells, and such a result is positive and prospective.

Keywords: drug delivery; dual-responsive nano-carrier; enhanced permeability and retention effect (EPR effect); magnetic nanoparticle (MNP); tumor microenvironment (TME).