Variation among Metschnikowia pulcherrima Isolates for Genetic Modification and Homologous Recombination

Microorganisms. 2021 Jan 31;9(2):290. doi: 10.3390/microorganisms9020290.

Abstract

Metschnikowia pulcherrima is a non-conventional yeast with the potential to be used in biotechnological processes, especially involving low-cost feedstock exploitation. However, there are a lack of tools for researching it at a molecular level and for producing genetically modified strains. We tested the amenability to genetic modification of ten different strains, establishing a transformation protocol based on LiAc/PEG that allows us to introduce heterologous DNA. Non-homologous integration was broadly successful and homologous recombination was successful in two strains. Chemical inhibition of non-homologous end joining recombination had a modest effect on the improvement of homologous recombination rates. Removal of selective markers via flippase recombinase was successful across integrated loci except for those targeted to the native URA3 locus, suggesting that the genome sequence or structure alters the efficacy of this system.

Keywords: biotechnology; homologous recombination; nonconventional yeasts.