Old forests and old carbon: A case study on the stand dynamics and longevity of aboveground carbon

Sci Total Environ. 2021 Apr 15:765:142737. doi: 10.1016/j.scitotenv.2020.142737. Epub 2020 Oct 8.

Abstract

Most information on the ecology of oak-dominated forests in Europe comes from forests altered for centuries because remnants of old-growth forests are rare. Disturbance and recruitment regimes in old-growth forests provide information on forest dynamics and their effects on long-term carbon storage. In an old-growth Quercus petraea forest in northwestern Spain, we inventoried three plots and extracted cores from 166 live and dead trees across canopy classes (DBH ≥ 5 cm). We reconstructed disturbance dynamics for the last 500 years from tree-ring widths. We also reconstructed past dynamics of above ground biomass (AGB) and recent AGB accumulation rates at stand level using allometric equations. From these data, we present a new tree-ring-based approach to estimate the age of carbon stored in AGB. The oldest tree was at least 568 years, making it the oldest known precisely-dated oak to date and one of the oldest broadleaved trees in the Northern Hemisphere. All plots contained trees over 400 years old. The disturbance regime was dominated by small, frequent releases with just a few more intense disturbances that affected ≤20% of trees. Oak recruitment was variable but rather continuous for 500 years. Carbon turnover times ranged between 153 and 229 years and mean carbon ages between 108 and 167 years. Over 50% of AGB (150 Mg·ha-1) persisted ≥100 years and up to 21% of AGB (77 Mg·ha-1) ≥300 years. Low disturbance rates and low productivity maintained current canopy oak dominance. Absence of management or stand-replacing disturbances over the last 500 years resulted in high forest stability, long carbon turnover times and long mean carbon ages. Observed dynamics and the absence of shade-tolerant species suggest that oak dominance could continue in the future. Our estimations of long-term carbon storage at centennial scales in unmanaged old-growth forests highlights the importance of management and natural disturbances for the global carbon cycle.

Keywords: Above ground biomass; Carbon age; Carbon turnover time; Dendroecology; Forest dynamics; Sessile oak.

MeSH terms

  • Biomass
  • Carbon*
  • Europe
  • Forests*
  • Spain
  • Trees

Substances

  • Carbon