Synthesis and preliminary anticancer evaluation of new triazole bisphosphonate-based isoprenoid biosynthesis inhibitors

Eur J Med Chem. 2021 Mar 15:214:113241. doi: 10.1016/j.ejmech.2021.113241. Epub 2021 Feb 2.

Abstract

The synthesis of a new set of triazole bisphosphonates 8a-d and 9a-d presenting an alkyl or phenyl substituent at the C-4 or C-5 position of the triazole ring is described. These compounds have been evaluated for their antiproliferative activity against MIA PaCa-2 (pancreas), MDA-MB-231 (breast) and A549 (lung) human tumor cell lines. 4-hexyl- and 4-octyltriazole bisphosphonates 8b-c both displayed remarkable antiproliferative activities with IC50 values in the micromolar range (0.75-2.4 μM) and were approximately 4 to 12-fold more potent than zoledronate. Moreover, compound 8b inhibits geranylgeranyl pyrophosphate biosynthesis in MIA PaCa-2 cells which ultimately led to tumor cells death.

Keywords: 1-Hydroxymethylene-1,1-bisphosphonic acid; Cancer; Chemotherapy; Click chemistry; Mevalonate pathway inhibition.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Diphosphonates / chemical synthesis
  • Diphosphonates / chemistry
  • Diphosphonates / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Structure-Activity Relationship
  • Terpenes / antagonists & inhibitors*
  • Terpenes / metabolism
  • Triazoles / chemical synthesis
  • Triazoles / chemistry
  • Triazoles / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Diphosphonates
  • Terpenes
  • Triazoles