Contact-dependent traits in Pseudomonas syringae B728a

PLoS One. 2021 Feb 11;16(2):e0241655. doi: 10.1371/journal.pone.0241655. eCollection 2021.

Abstract

Production of the biosurfactant syringafactin by the plant pathogen Pseudomonas syringae B728a is a surface contact-dependent trait. Expression of syfA, as measured using a gfp reporter gene fusion was low in planktonic cells in liquid cultures but over 4-fold higher in cells immobilized on surfaces as varied as glass, plastic, paper, parafilm, agar, membrane filters, and leaves. Induction of syfA as measured by GFP fluorescence was rapid, occurring within two hours after immobilization of cells on surfaces. Comparison of the global transcriptome by RNA sequencing of planktonic cells in a nutrient medium with that of cells immobilized for 2 hours on filters placed on this solidified medium revealed that, in addition to syfA, 3156 other genes were differentially expressed. Genes repressed in immobilized cells included those involved in quaternary ammonium compound (QAC) metabolism and transport, compatible solute production, carbohydrate metabolism and transport, organic acid metabolism and transport, phytotoxin synthesis and transport, amino acid metabolism and transport, and secondary metabolism. Genes induced in immobilized cells included syfA plus those involved in translation, siderophore synthesis and transport, nucleotide metabolism and transport, flagellar synthesis and motility, lipopolysaccharide (LPS) synthesis and transport, energy generation, transcription, chemosensing and chemotaxis, replication and DNA repair, iron-sulfur proteins, peptidoglycan/cell wall polymers, terpenoid backbone synthesis, iron metabolism and transport, and cell division. That many genes are rapidly differentially expressed upon transfer of cells from a planktonic to an immobilized state suggests that cells experience the two environments differently. It seems possible that surface contact initiates anticipatory changes in P. syringae gene expression, which enables rapid and appropriate physiological responses to the different environmental conditions such as might occur in a biofilm. Such responses could help cells survive transitions from aquatic habitats fostering planktonic traits to attachment on surfaces, conditions that alternatively occur on leaves.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics*
  • Gene Expression Regulation, Bacterial*
  • Genes, Bacterial
  • Plant Diseases / microbiology*
  • Pseudomonas syringae / genetics*
  • RNA, Bacterial / genetics
  • Surface Properties

Substances

  • Bacterial Proteins
  • RNA, Bacterial