Role of next generation sequencing-based liquid biopsy in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: impact of STK11, KRAS and TP53 mutations and co-mutations on outcome

Transl Lung Cancer Res. 2021 Jan;10(1):202-220. doi: 10.21037/tlcr-20-674.

Abstract

Background: Characterization of tumor-related genetic alterations is promising for the screening of new predictive markers in non-small cell lung cancer (NSCLC). Aim of the study was to evaluate prognostic and predictive role of most frequent tumor-associated genetic alterations detected in plasma before starting immune checkpoint inhibitors (ICIs).

Methods: Between January 2017 and October 2019, advanced NSCLC patients were prospectively screened with plasma next-generation sequencing (NGS) while included in two trials: VISION (NCT02864992), using Guardant360® test, and MAGIC (Monitoring Advanced NSCLC through plasma Genotyping during Immunotherapy: Clinical feasibility and application), using Myriapod NGS-IL 56G Assay. A control group of patients not receiving ICIs was analyzed.

Results: A total of 103 patients receiving ICIs were analyzed: median overall survival (OS) was 20.8 (95% CI: 16.7-24.9) months and median immune-related progression free disease (irPFS) 4.2 (95% CI: 2.3-6.1) months. TP53 mutations in plasma negatively affected OS both in patients treated with ICIs and in control group (P=0.001 and P=0.009), indicating a prognostic role. STK11 mutated patients (n=9) showed a trend for worse OS only if treated with ICIs. The presence of KRAS/STK11 co-mutation and KRAS/STK11/TP53 co-mutation affected OS only in patients treated with ICIs (HR =10.936, 95% CI: 2.337-51.164, P=0.002; HR =17.609, 95% CI: 3.777-82.089, P<0.001, respectively), indicating a predictive role.

Conclusions: Plasma genotyping demonstrated prognostic value of TP53 mutations and predictive value of KRAS/STK11 and KRAS/STK11/TP53 co-mutations.

Keywords: Immunotherapy; STK11; circulating tumor DNA; lung cancer; predictive biomarkers.