Ameliorative Effects of Loganin on Arthritis in Chondrocytes and Destabilization of the Medial Meniscus-Induced Animal Model

Pharmaceuticals (Basel). 2021 Feb 8;14(2):135. doi: 10.3390/ph14020135.

Abstract

Arthritis is a common inflammatory disease that causes pain, stiffness, and joint swelling. Here, we investigated the ameliorative effects of loganin on arthritis in vitro and in vivo. A single bioactive compound was fractionated and isolated from Cornus officinalis (CO) extract to screen for anti-arthritic effects. A single component, loganin, was identified as a candidate. The CO extract and loganin inhibited the expression of factors associated with cartilage degradation, such as cyclooxygenase-2 (COX-2), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13), in interukin-1 beta (IL-1β)-induced chondrocyte inflammation. In addition, prostaglandin and collagenase levels were reduced following treatment of IL-1β-induced chondrocytes with loganin. In the destabilization of the medial meniscus (DMM)-induced mouse model, loganin administration attenuated cartilage degeneration by inhibiting COX-2, MMP-3, and MMP-13. Transverse micro-CT images revealed that loganin reduced DMM-induced osteophyte formation. These results indicate that loganin has protective effects in DMM-induced mice.

Keywords: Cornus officinalis; anti-inflammatory effect; arthritis; destabilization of the medial meniscus; loganin.