Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti3C2Tx MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing

ACS Nano. 2021 Feb 23;15(2):2468-2480. doi: 10.1021/acsnano.0c06287. Epub 2021 Feb 10.

Abstract

Chronic bacterial-infected wound healing/skin regeneration remains a challenge due to drug resistance and the poor quality of wound repair. The ideal strategy is combating bacterial infection, while facilitating satisfactory wound healing. However, the reported strategy hardly achieves these two goals simultaneously without the help of antibiotics or bioactive molecules. In this work, a two-dimensional (2D) Ti3C2Tx MXene with excellent conductivity, biocompatibility, and antibacterial ability was applied in developing multifunctional scaffolds (HPEM) for methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. HPEM scaffolds were fabricated by the reaction between the poly(glycerol-ethylenimine), Ti3C2Tx MXene@polydopamine (MXene@PDA) nanosheets, and oxidized hyaluronic acid (HCHO). HPEM scaffolds presented multifunctional properties containing self-healing behavior, electrical conductivity, tissue-adhesive feature, antibacterial activity especially for MRSA resistant to many commonly used antibiotics (antibacterial efficiency was 99.03%), and rapid hemostatic capability. HPEM scaffolds enhanced the proliferation of normal skin cells with negligible toxicity. Additionally, HPEM scaffolds obviously accelerated the MRSA-infected wound healing (wound closure ratio was 96.31%) by efficient anti-inflammation effects, promoting cell proliferation, and the angiogenic process, stimulating granulation tissue formation, collagen deposition, vascular endothelial differentiation, and angiogenesis. This study indicates the important role of multifunctional 2D MXene@PDA nanosheets in infected wound healing. HPEM scaffolds with multifunctional properties provide a potential strategy for MRSA-infected wound healing/skin regeneration.

Keywords: MXene-based biomaterials; angiogenesis; antibacterial activity; hemostasis; infected wound healing; multifunctional bioactive scaffolds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacteria
  • Electric Conductivity
  • Hemostatics* / pharmacology
  • Methicillin-Resistant Staphylococcus aureus*
  • Titanium
  • Wound Healing

Substances

  • Anti-Bacterial Agents
  • Hemostatics
  • Titanium