YAP expression in endothelial cells prevents ventilator-induced lung injury

Am J Physiol Lung Cell Mol Physiol. 2021 Apr 1;320(4):L568-L582. doi: 10.1152/ajplung.00472.2020. Epub 2021 Feb 10.

Abstract

Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.

Keywords: Yes-associated protein; inflammation; vascular endothelial protein tyrosine phosphatase; vascular endothelial-cadherin; ventilator-induced lung injury.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptor Proteins, Signal Transducing / physiology*
  • Animals
  • Antigens, CD / metabolism
  • Cadherins / metabolism
  • Capillary Permeability*
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / immunology
  • Endothelium, Vascular / metabolism*
  • Female
  • Lung / cytology
  • Lung / immunology
  • Lung / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neutrophils / immunology*
  • Neutrophils / metabolism
  • Phosphorylation
  • Ventilator-Induced Lung Injury / etiology
  • Ventilator-Induced Lung Injury / metabolism
  • Ventilator-Induced Lung Injury / pathology
  • Ventilator-Induced Lung Injury / prevention & control*
  • YAP-Signaling Proteins

Substances

  • Adaptor Proteins, Signal Transducing
  • Antigens, CD
  • Cadherins
  • YAP-Signaling Proteins
  • Yap1 protein, mouse
  • cadherin 5