Assessing the ADC of Bone-marrow on Whole-body MR Images in Relation to the Fat-suppression Method and Fat Content

Magn Reson Med Sci. 2022 Jul 1;21(3):407-413. doi: 10.2463/mrms.mp.2020-0129. Epub 2021 Feb 9.

Abstract

Purpose: To compare apparent diffusion coefficients (ADCs) of bone marrow on diffusion-weighted imaging (DWI) between two fat-suppression techniques, and to evaluate the association between bone-marrow ADCs and the proton density fat fraction (PDFF).

Methods: Seventy-seven patients underwent whole-body DWI with short-inversion time inversion-recovery (STIR) (DWISTIR) and/or STIR + selective water-excitation (spectral-spatial RF [SSRF]) (DWISTIR+SSRF). ADCs of lumbar vertebrae (L3 and L4) were compared between DWISTIR and DWISTIR+SSRF, and correlated with the PDFF.

Results: Lumbar ADCs obtained by DWISTIR and DWISTIR+SSRF were significantly correlated (L3: r = 0.90, P < 0.0001, L4: r = 0.90, P < 0.0001). Lumbar ADCs (× 10-6 mm2/s) obtained by DWISTIR were significantly lower than those by DWISTIR+SSRF (L3: 479 ± 137 and 490 ± 148, P < 0.05, L4: 456 ± 114 and 471 ± 118, P < 0.005). Residual fat signals were more clearly observed on DWISTIR than on DWISTIR+SSRF. The ADCs of L3 obtained by DWISTIR and DWISTIR+SSRF exhibited significant positive correlations with the PDFF (r = 0.51, P < 0.0001, and r = 0.45, P < 0.0001, respectively), and the ADCs of L4 obtained by DWISTIR and DWISTIR+SSRF exhibited significantly positive correlations with the PDFF (r = 0.40, P < 0.0005, and r = 0.40, P < 0.0005, respectively).

Conclusion: Irrespective of different fat-suppression methods, lumbar ADCs were positively correlated with the PDFF, being inconsistent with previous studies. Lumbar ADCs obtained by DWISTIR were significantly lower than those obtained by DWISTIR+SSRF, probably due to residual fat signals on DWISTIR. However, this difference (< 4%) did not explain the positive correlation between lumbar ADC and PDFF.

Keywords: apparent diffusion coefficient; bone marrow; fat fraction; fat suppression.

MeSH terms

  • Adipose Tissue / diagnostic imaging
  • Bone Marrow* / diagnostic imaging
  • Diffusion Magnetic Resonance Imaging* / methods
  • Humans
  • Lumbar Vertebrae / diagnostic imaging
  • Protons

Substances

  • Protons