Axon-glia interactions in the ascending auditory system

Dev Neurobiol. 2021 Jul;81(5):546-567. doi: 10.1002/dneu.22813. Epub 2021 Feb 26.

Abstract

The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.

Keywords: Schwann cells; astrocytes; auditory system; glia; hearing loss; neuron-glia interactions; oligodendrocytes; satellite glial cells; supporting cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Pathways* / physiology
  • Axons
  • Cochlea* / physiology
  • Humans
  • Mammals
  • Neuroglia